School/Faculty/Institute Faculty of Engineering
Course Code IE 104
Course Title in English Computational Methods for IE
Course Title in Turkish Endüstri Mühendisliği için Hesaplama Yöntemleri
Language of Instruction EN
Type of Course Ters-yüz öğrenme
Level of Course Seçiniz
Semester Spring
Contact Hours per Week
Lecture: 3 Recitation: 0 Lab: 0 Other: 0
Estimated Student Workload 152 hours per semester
Number of Credits 6 ECTS
Grading Mode Standard Letter Grade
Pre-requisites COMP 109 - Computer Programming (JAVA) | COMP 113 - Computer Programming (Python)
Co-requisites None
Expected Prior Knowledge Prior knowledge on computer programming fundamentals and structures
Registration Restrictions Only Undergraduate Students
Overall Educational Objective
Course Description This course explores the design and implementation of decision support systems (DSS) using Excel & VBA. The following topics are covered: Excel basics & formatting; referencing & names for cells, worksheets, workbooks; R1C1 notation; functions & formulas; auditing; creating charts & sparklines; chart tools; pivot tables & charts; performing statistical analysis & solving mathematical models using Excel; working with large data in Excel; Visual Basic environment; recording macros; properties, methods, referencing & formulas in VBA; objects & variables; sub & function procedures; programming structures; arrays; debugging; creating user interface; DSS development process; graphical user interface design; case studies in DSS

Course Learning Outcomes and Competences

Upon successful completion of the course, the learner is expected to be able to:
1) Verilen karmaşık bir iş vakasında anahtar kavramları tanımlar, açıklar ve problem çözme süreçlerini açıklar
2) Verilen bir mühendislik problemine yönelik bir elektronik tablo tabanlı çözüm çerçevesi tasarlar
3) Elektronik tablo bilgisini ve analiz becerilerini göstermek için bir proje raporu hazırlar.
4) Dönem projesi sırasında bir takım üyesi olarak etkili bir şekilde çalışır ve takım liderliğini gösterir.
5) Projesinin raporunu ve sonuçlarını sunar
6) Temel elektronik tablo özelliklerini, fonksiyonlarını ve yöntemlerini uygular, kullanır ve gösterir.
7) Programlama becerilerini VBA kullanarak gösterir
Program Learning Outcomes/Course Learning Outcomes 1 2 3 4 5 6 7
1) Psikolojideki başlıca kavramlar, teorik perspektifler, deneysel bulgular ve tarihsel eğilimler hakkında kapsamlı bilgi edinilmesi.
2) Psikolojide temel araştırma yöntemlerini, ayrıca araştırma tasarımı, veri analizi ve veri yorumlama anlama ve uygulama becerisi.
3) Davranış ve zihinsel süreçlerle ilgili problemleri çözmek için eleştirel ve yaratıcı düşünme, şüpheci sorgulama ve bilimsel bir yaklaşım kullanma yetkinliği.
4) Psikolojik ilke, beceri ve değerleri kişisel, sosyal ve örgütsel bağlamlarda anlama ve uygulama becerisi.
5) Psikoloji disipliniyle bağlantılı olan kanıtları değerlendirme, belirsizliği tolere etme ve diğer değerleri yansıtma becerisi.
6) Mesleki etik standartların içselleştirilmesi ve yayılması.
7) Psikoloji ve diğer sosyal bilimler alanlarında bilgi edinme amacıyla bilgi teknolojileri, bilgisayar ve diğer teknolojileri kullanma konusunda yetkinlik gösterme.
8) Psikoloji bilimi bilgisini Türkçe ve en azından CEFR B2 düzeyinde İngilizce olmak üzere çeşitli formatlarda etkili bir şekilde iletme becerisi.
9) Sosyokültürel ve uluslararası çeşitliliğin karmaşıklığını tanıma, anlama ve buna saygı gösterme.
10) Yaşam boyu öğrenme, araştırma ve kendini geliştirme ihtiyacını tanıma ve bu doğrultuda beceriler geliştirme.
11) Psikolojik teori ve literatüre dayanarak eleştirel hipotezler oluşturma ve bu hipotezleri test etmek için çalışmalar tasarlama becerisi.
12) Bağımsız olarak bilgi edinme ve kendi öğrenimini planlama becerisi.
13) Yazılı çalışmaların ve sunumların netliği ve düzeni konusunda ileri düzeyde yetkinlik gösterme.

Relation to Program Outcomes and Competences

N None S Supportive H Highly Related
     
Program Outcomes and Competences Level Assessed by
1) Psikolojideki başlıca kavramlar, teorik perspektifler, deneysel bulgular ve tarihsel eğilimler hakkında kapsamlı bilgi edinilmesi. N
2) Psikolojide temel araştırma yöntemlerini, ayrıca araştırma tasarımı, veri analizi ve veri yorumlama anlama ve uygulama becerisi. N
3) Davranış ve zihinsel süreçlerle ilgili problemleri çözmek için eleştirel ve yaratıcı düşünme, şüpheci sorgulama ve bilimsel bir yaklaşım kullanma yetkinliği. H Sınav,Ödev,Derse Katılım
4) Psikolojik ilke, beceri ve değerleri kişisel, sosyal ve örgütsel bağlamlarda anlama ve uygulama becerisi. N
5) Psikoloji disipliniyle bağlantılı olan kanıtları değerlendirme, belirsizliği tolere etme ve diğer değerleri yansıtma becerisi. N
6) Mesleki etik standartların içselleştirilmesi ve yayılması. N
7) Psikoloji ve diğer sosyal bilimler alanlarında bilgi edinme amacıyla bilgi teknolojileri, bilgisayar ve diğer teknolojileri kullanma konusunda yetkinlik gösterme. N
8) Psikoloji bilimi bilgisini Türkçe ve en azından CEFR B2 düzeyinde İngilizce olmak üzere çeşitli formatlarda etkili bir şekilde iletme becerisi. N
9) Sosyokültürel ve uluslararası çeşitliliğin karmaşıklığını tanıma, anlama ve buna saygı gösterme. S Derse Katılım
10) Yaşam boyu öğrenme, araştırma ve kendini geliştirme ihtiyacını tanıma ve bu doğrultuda beceriler geliştirme. S Ödev,Derse Katılım
11) Psikolojik teori ve literatüre dayanarak eleştirel hipotezler oluşturma ve bu hipotezleri test etmek için çalışmalar tasarlama becerisi. N
12) Bağımsız olarak bilgi edinme ve kendi öğrenimini planlama becerisi. S Sınav,Ödev
13) Yazılı çalışmaların ve sunumların netliği ve düzeni konusunda ileri düzeyde yetkinlik gösterme. H Sınav,Ödev
Prepared by and Date EVREN GÜNEY , October 2024
Course Coordinator EVREN GÜNEY
Semester Spring
Name of Instructor Dr. Öğr. Üyesi HÜSEYİN KUTAY TİNÇ

Course Contents

Hafta Konu
1) Introduction to decision support systems (DSS), Excel Basics and Formatting
2) Referencing and Names, Functions and Formulas
3) Functions and formulas (continued)
4) Charts and Sparklines, Pivot Tables
5) Statistical Analysis
6) The Solver & other tools, working with large data
7) Introduction to VBA, Recording Macros
8) Objects and Variables
9) Objects and Variables, Sub procedures and function procedures
10) Programming structures
11) Programming structures, Arrays
12) User Interface
13) DSS Development Process, GUI Design
14) GUI Design and case studies
15) Final Exam/Project/Presentation Period
16) Final Exam/Project/Presentation Period
Required/Recommended ReadingsEkşioğlu, S. D., Şeref, M.M.H., Ahuja, R.K., Winston, W.L. (2011). Developing Spreadsheet-Based Decision Support Systems (2nd Edition). Belmont, Massachusetts: Dynamic Ideas
Teaching MethodsLectures/contact hours using “flipped classroom” as an active learning technique
Homework and Projectsweekly assignments over Pearson My ITLAB, 1 group project (consisting of 2-3 students
Laboratory WorkComputer laboratory
Computer UseMS Excel (preferably 2016 or later version), Visual Basic for Applications
Other Activitiesnone
Assessment Methods
Assessment Tools Count Weight
Küçük Sınavlar 10 % 20
Ödev 10 % 20
Ara Sınavlar 1 % 30
Final 1 % 30
TOTAL % 100
Course Administration guneye@mef.edu.tr

Rules for attendance: Minimum attendance requirement is 70%. Missing a Homework/Project: N/A. Missing the Midterm: You are expected to be present without exception and to plan any travel around these dates accordingly. Medical emergencies are of course excluded if accompanied by a doctor’s note. A note indicating that you were seen at the health center on the day of the exam is not a sufficient documentation of medically excused absence from the exam. The note must say that you were medically unable to take the exam. Provided that proper documents of excuse are presented, a make-up exam will be given for each missed midterm. If you fail to take the exam on the assigned day and do not have a valid excuse, you will be given zero (0) on the exam. Employment interviews, employer events, weddings, vacations, etc. are not excused absences. Missing the Final: Faculty regulations. Eligibility to enter the final exam: Students are required to achieve 40% success rate in midterm and assignment. A reminder of proper classroom behavior, code of student conduct: YÖK Regulations Statement on plagiarism: YÖK Regulations (http://3fcampus.mef.edu.tr/uploads/cms/webadmin.mef.edu.tr/4833_2.pdf ) Disclaimer: The instructor reserves the right, when necessary, to alter the grading policy, change examination dates, and modify the syllabus and course content. Modifications will be announced in class. Students are responsible for the announced changes.

ECTS Student Workload Estimation

Activity No/Weeks Hours Calculation
No/Weeks per Semester Preparing for the Activity Spent in the Activity Itself Completing the Activity Requirements
Ders Saati 14 1 3 1 70
Proje 1 20 10 30
Ödevler 10 1 2 30
Ara Sınavlar 1 20 2 22
Total Workload 152
Total Workload/25 6.1
ECTS 6