School/Faculty/Institute Faculty of Engineering
Course Code COMP 451
Course Title in English Introduction to Natural Language Processing
Course Title in Turkish Doğal Dil İşlemeye Giriş
Language of Instruction EN
Type of Course Flipped Classroom
Level of Course Introductory
Semester Fall
Contact Hours per Week
Lecture: 3 Recitation: - Lab: - Other: -
Estimated Student Workload 152 hours per semester
Number of Credits 6 ECTS
Grading Mode Standard Letter Grade
Pre-requisites None
Co-requisites None
Expected Prior Knowledge Prior knowledge in programming, basic mathematics and probability.
Registration Restrictions Only Undergraduate Students
Overall Educational Objective To gain an understanding of computational properties of natural languages, learn different aspects and basic fundamentals of natural language processing, and become familiar with how to design algorithms and applications to process linguistic information.
Course Description This course covers the fundamentals of natural language processing: morphological analysis, syntactic analysis, parsing, language models, semantics, pragmatic analysis, and evaluation. Moreover, some NLP topics and algorithms are covered such as part-of-speech tagging, word sense disambiguation, dialogue systems, language generation, text classification, summarization, and question answering.

Course Learning Outcomes and Competences

Upon successful completion of the course, the learner is expected to be able to:
1) describe basic principles, algorithms and theoretical issues underlying natural language processing;
2) use probability and statistics to solve linguistic problems;
3) apply computational techniques and tools to process texts written in human languages;
4) analyze and interpret textual data used for natural language processing applications;
5) demonstrate team effort in identifying and solving a complex engineering problem using NLP techniques;
6) acquire and apply new knowledge to prepare a well-organized research report on a selected topic;
7) present research work in front of an audience
Program Learning Outcomes/Course Learning Outcomes 1 2 3 4 5 6 7
1) Ekonomi konusunda geniş bir anlayışa sahip olup, diğer sosyal bilimler ve matematikle derin bir etkileşime sahip olmak.
2) Farklı ekonomi alanlarının etkileşimlerini anlama konusunda bilgi ve beceriler sergilemek
3) Mikroekonomik ve makroekonomik teoriyi anlamak
4) Ekonomik kavramları karmaşık sorunları çözmek ve karar verme yeteneğini geliştirmek için uygulamak.
5) Farklı ekonomik sistemleri analiz etmek için nicel teknikler kullanmak.
6) Teorik bilgileri, Türk ve küresel ekonomilere ilişkin sorunları analiz etmek için uygulamak.
7) Ekonomik verileri işlemek ve değerlendirmek için istatistiksel araçlar ve yaygın yazılım programları konusunda yetkinlik göstermek.
8) Ekonomik analizin tüm aşamalarında - veri toplama, yorumlama ve bulguları yayma - bilimsel ve etik değerlere göre davranmak.
9) Bilimsel bilgileri alışverişinde yazılı ve sözlü İngilizceyi etkili bir şekilde kullanmak (en az CEFR B2 seviyesinde).
10) Bireysel ve profesyonel etik davranış sergiler ve sosyal sorumluluk taşımak.
11) Yüksek derecede özerklikle daha ileri çalışmalar için gerekli öğrenme becerilerini sergilemek.

Relation to Program Outcomes and Competences

N None S Supportive H Highly Related
     
Program Outcomes and Competences Level Assessed by
1) Ekonomi konusunda geniş bir anlayışa sahip olup, diğer sosyal bilimler ve matematikle derin bir etkileşime sahip olmak. N
2) Farklı ekonomi alanlarının etkileşimlerini anlama konusunda bilgi ve beceriler sergilemek N
3) Mikroekonomik ve makroekonomik teoriyi anlamak N
4) Ekonomik kavramları karmaşık sorunları çözmek ve karar verme yeteneğini geliştirmek için uygulamak. N
5) Farklı ekonomik sistemleri analiz etmek için nicel teknikler kullanmak. N
6) Teorik bilgileri, Türk ve küresel ekonomilere ilişkin sorunları analiz etmek için uygulamak. N
7) Ekonomik verileri işlemek ve değerlendirmek için istatistiksel araçlar ve yaygın yazılım programları konusunda yetkinlik göstermek. N
8) Ekonomik analizin tüm aşamalarında - veri toplama, yorumlama ve bulguları yayma - bilimsel ve etik değerlere göre davranmak. H
9) Bilimsel bilgileri alışverişinde yazılı ve sözlü İngilizceyi etkili bir şekilde kullanmak (en az CEFR B2 seviyesinde). H
10) Bireysel ve profesyonel etik davranış sergiler ve sosyal sorumluluk taşımak. H
11) Yüksek derecede özerklikle daha ileri çalışmalar için gerekli öğrenme becerilerini sergilemek. H
Prepared by and Date ŞENİZ DEMİR , December 2020
Course Coordinator ŞENİZ DEMİR
Semester Fall
Name of Instructor Doç. Dr. ŞENİZ DEMİR

Course Contents

Hafta Konu
1) Introduction to Natural Language Processing
2) Morphological Analysis and Disambiguation
3) Language Models and N-grams
4) Syntactic Analysis and Dependency Parsing
5) Semantics, Discourse, and Pragmatics
6) Evaluation Methods and Metrics
7) Part-of-speech Tagging and Word Sense Disambiguation
8) Text Classification and Named Entity Recognition
9) Text Summarization
10) Dialogue Systems
11) Natural Language Generation
12) Word Embeddings
13) Sequence-to-sequence learning with RNNs
14) Research report presentations
15) Final Examination/Project/Presentation Period
16) Final Examination/Project/Presentation Period
Required/Recommended Readings(Recommended) Speech and Language Processing, D. Jurafsky, J.H. Martin, 2nd Edition, Pearson-Prentice Hall, 2009. (Supplementary) Foundations of Statistical Natural Language Processing, C.D. Manning, H. Schutze, MIT Press, 2002. (Supplementary) Natural Language Processing with Python, S.Bird, E.Klein, E.Loper, O’Reilly Media, 2009.
Teaching MethodsFlipped Classroom
Homework and ProjectsIn-Class flipped Practices, Projects
Laboratory WorkNone
Computer UseRequired
Other ActivitiesNone
Assessment Methods
Assessment Tools Count Weight
Ödev 1 % 15
Sunum 1 % 20
Projeler 1 % 35
Ara Sınavlar 1 % 30
TOTAL % 100
Course Administration demirse@mef.edu.tr
535
Instructor’s office: Room 536 (5th floor) Office hours: TBA. E-mail address: demirse@mef.edu.tr Rules for attendance: No attendance required A reminder of proper classroom behavior, code of student conduct: YÖK Regulations Statement on plagiarism: YÖK Regulations

ECTS Student Workload Estimation

Activity No/Weeks Hours Calculation
No/Weeks per Semester Preparing for the Activity Spent in the Activity Itself Completing the Activity Requirements
Ders Saati 14 1 3 1 70
Sunum / Seminer 1 1 14 2 17
Proje 1 1 14 2 17
Ödevler 2 1 14 2 34
Ara Sınavlar 1 10 2 2 14
Total Workload 152
Total Workload/25 6.1
ECTS 6