School/Faculty/Institute Faculty of Engineering
Course Code IE 307
Course Title in English Modeling and Methods in Optimization
Course Title in Turkish Modelleme ve Optimizasyonda Yöntemler
Language of Instruction EN
Type of Course Flipped Classroom,Laboratory Work,Lecture
Level of Course Advanced
Semester Fall
Contact Hours per Week
Lecture: 4 Recitation: none Lab: none Other: none
Estimated Student Workload 175 hours per semester
Number of Credits 7 ECTS
Grading Mode Standard Letter Grade
Pre-requisites IE 202 - Operations Research I
Co-requisites None
Expected Prior Knowledge Prior knowledge in deterministic operations research methodologies
Registration Restrictions none
Overall Educational Objective To learn mathematical modeling in depth and use/develop solution methods.
Course Description This course presents various aspects of mathematical modeling and of problem-solving strategies used for the solution of realistic, large-scale, complex problems. The following topics are covered: modeling with integer programming; branch-and-bound method; building advanced linear programming models; importance of linearity; linearization of some nonlinear programming problems; goal programming; shortest path problem; minimal spanning tree problem; maximum flow problem; examples of combinatorial optimization problems; heuristics for combinatorial optimization problems such as list processing heuristics, local search; non-linear models in one variable; convexity; unconstrained and constrained optimization in non-linear programming.

Course Learning Outcomes and Competences

Upon successful completion of the course, the learner is expected to be able to:
1) optimizasyon problemlerinde ağ yapısını tanımlar ve uygun çözüm yöntemlerini kullanır;
2) iyi matematiksel modeller oluşturur;
3) optimizasyon algoritmalarını inceler;
4) optimizasyon problemleri için uygun algoritmalar tasarlar, sonuçları analiz eder ve yorumlar ve sonuçlar çıkarır;
5) tasarlanan bir algoritmanın gösterimini yapar;
6) bir ekip üyesi olarak etkili bir şekilde çalışır;
7) doğrusal olmayan problemler için çözüm tekniklerini uygular.
Program Learning Outcomes/Course Learning Outcomes 1 2 3 4 5 6 7

Relation to Program Outcomes and Competences

N None S Supportive H Highly Related
     
Program Outcomes and Competences Level Assessed by
Prepared by and Date HANDE KÜÇÜKAYDIN , March 2024
Course Coordinator HANDE KÜÇÜKAYDIN
Semester Fall
Name of Instructor Dr. Öğr. Üyesi HANDE KÜÇÜKAYDIN

Course Contents

Hafta Konu
1) Tam Sayılı Programlama ile Modelleme
2) Tam Sayılı Programlama ile Modelleme
3) Tam Sayılı Programlama ile Modelleme, Dal-Sınır Yöntemi
4) Dal-Sınır Yöntemi, İleri Seviye Doğrusal Programlama Modelleri
5) İleri Seviye Doğrusal Programlama Modelleri, Ağ Optimizasyon Modelleri: En Kısa Yol Problemi, Minimum Örten Ağaç Problemi
6) Ağ Optimizasyon Modelleri: En Kısa Yol Problemi, Minimum Örten Ağaç Problemi, En Büyük Akış Problemi
7) Ağ Optimizasyon Modelleri: En Büyük Akış Problemi, Kombinatoriyal Optimizasyon Problemleri
8) Kombinatoriyal Optimizasyon için Sezgiseller: Giriş, Yeniden Formülasyon, Yuvarlama ve Ayrıştırma, Liste İşleme Sezgiselleri
9) Kombinatoriyal Optimizasyon için Sezgiseller: Liste İşleme Sezgiselleri, Komşuluklar ve Komşular
10) Komşuluklar ve Komşular, Yerel Arama
11) Yerel Arama, Tek Değişkenli Doğrusal Olmayan Modeller
12) Tek Değişkenli Doğrusal Olmayan Modeller, Doğrusal Olmayan Modeller: Dışbükeylik ve Kısıtsız Optimizasyon
13) Doğrusal Olmayan Modeller: Dışbükeylik ve Kısıtsız Optimizasyon, Doğrusal Olmayan Modeller: Kısıtlı Optimizasyon
14) Doğrusal Olmayan Modeller: Kısıtlı Optimizasyon
15) Final Sınavı/Projeler/Sunum dönemi
16) Final Sınavı/Projeler/Sunum dönemi
Required/Recommended Readings• Williams, H. P. (2013). Model Building in Mathematical Programming (5th Edition). Wiley • Hillier, F.S., Lieberman, G. J. (2015). Introduction to Operations Research (10th Edition). McGraw-Hill Education
Teaching MethodsLectures/contact hours using “flipped classroom” as an active learning technique
Homework and ProjectsA project will be completed in groups of students.
Laboratory WorkNone
Computer UseYes
Other Activitiesnone
Assessment Methods
Assessment Tools Count Weight
Küçük Sınavlar 3 % 30
Projeler 1 % 35
Ara Sınavlar 1 % 35
TOTAL % 100
Course Administration hande.kucukaydin@mef.edu.tr
212 3953631
Instructor’s -office and phone number: 5th floor, 212 3953631 -office hours: TBA -email address: hande.kucukaydin@mef.edu.tr Exams and quizzes: Closed book and closed notes. Rules for attendance: YÖK regulations. You are responsible for the announcements made in class. Rules for late submission of assignments: N/A Missing a quiz: Provided that proper documents of excuse are presented, a make-up exam will be given for each missed quiz. Missing a project: Project deadlines are always extendable up to 72 hours, with submissions late for (0,24] hours receive 70% of the credit they get, (24,48] hours receive 35% , and (48,72] receive 10%. Missing a midterm: You are expected to be present without exception and to plan any travel around these dates accordingly. Medical emergencies are of course excluded if accompanied by a doctor’s note. A note indicating that you were seen at the health center on the day of the exam is not a sufficient documentation of medically excused absence from the exam. The note must say that you were medically unable to take the exam. Provided that proper documents of excuse are presented, a make-up exam will be given for each missed midterm. If you fail to take the exam on the assigned day and do not have a valid excuse, you will be given zero (0) on the exam. Employment interviews, employer events, weddings, vacations, etc. are not excused absences. Eligibility to take the final exam: YÖK regulations. Missing a final: Faculty regulations. A reminder of proper classroom behavior, code of student conduct: YÖK Regulations Academic dishonesty and plagiarism: YÖK Regulations

ECTS Student Workload Estimation

Activity No/Weeks Hours Calculation
No/Weeks per Semester Preparing for the Activity Spent in the Activity Itself Completing the Activity Requirements
Ders Saati 14 1 4 1 84
Proje 1 40 2 42
Küçük Sınavlar 3 6 1 21
Ara Sınavlar 1 25 3 28
Total Workload 175
Total Workload/25 7.0
ECTS 7