School/Faculty/Institute Graduate School
Course Code MECH 501
Course Title in English Mechatronic Systems Modeling and Control
Course Title in Turkish Mekatronik Sistem Modelleme ve Kontrol
Language of Instruction EN
Type of Course Lecture
Level of Course Advanced
Semester Spring
Contact Hours per Week
Lecture: 3 Recitation: - Lab: - Other: -
Estimated Student Workload 343 hours per semester
Number of Credits 7.5 ECTS
Grading Mode Standard Letter Grade
Pre-requisites None
Co-requisites None
Expected Prior Knowledge Basic knowledge of electric and electronic engineering
Registration Restrictions Only Graduate Students
Overall Educational Objective To learn the principles of analog control engineering such as system modeling in time and frequency domains, time response, stability, root locus, and state space design.
Course Description The objective of this course is to provide the student with an introduction to modeling, analysis, simulation and control of mechatronics systems. Computer modeling and mathematical representation of mechanical, electrical, hydraulic, thermal, and electronic systems or combinations of these. The following topics will be emphasized: System modeling and analysis of linear time-invariant systems in time, Laplace, frequency domain, and state-space methods; time response; block diagram reduction; stability analysis using the Routh-Hurwitz and Root Locus techniques; system model conversions; system analysis with initial conditions and general form inputs; state variable feedback controller design. Computer-aided tools such as MATLAB and Simulink will be used throughout the course, and laboratory practice is included.

Course Learning Outcomes and Competences

Upon successful completion of the course, the learner is expected to be able to:
1) Blok diyagram modellemesi ve matematiksel modellerini adi diferansiyel denklemler, Laplace dönüşümü, frekans alanı ve durum uzayı gösterimleri olarak kurma konusunda problemleri tanımlama, analiz etme, formüle etme ve çözme;
2) Çok serbestlik derecesine sahip doğrusal, zamana bağlı olmayan mekanik sistemler için ağ analizini uygulayarak sorunları tanımlamak, analiz etmek, formüle etmek ve çözmek; durum uzayı modelini elde etmek;
3) İkinci dereceden sistemlerin zaman tepkisi davranışına ilişkin sorunları tanımlayın, analiz edin, formüle edin ve çözün, kararlılık analizini uygulayın ve MATLAB Kontrol Sistemleri Araç Kutusu ve Simulink'i kullanarak PID denetleyicileri tasarlayın;
4) Gerçek yaşam uygulaması için bir PID kontrol sistemi tasarlayın ve simüle edin;
5) Bir proje ekibinde iletişim kurmak ve işbirliği yapmak, hedefler belirlemek, görevleri tamamlamak ve son teslim tarihlerine uymak, profesyonel bir şekilde nihai raporunu yazmak ve sözlü olarak savunmak;
6) Kendi kendine öğrenme ve yeni bilgiyi kendi imkânlarıyla uygulama becerisini, yaşam boyu sürecek değerli bir öğrenme becerisi olarak benimser.
Program Learning Outcomes/Course Learning Outcomes 1 2 3 4 5 6
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

Relation to Program Outcomes and Competences

N None S Supportive H Highly Related
     
Program Outcomes and Competences Level Assessed by
1) H Sınav,Ödev,Derse Katılım,Proje
2) H Proje
3) H Proje
4) S Proje
5) N
6) N
7) S Proje
8) S Proje
9) S Proje
10) N
Prepared by and Date DANTE DORANTES , January 2023
Course Coordinator DANTE DORANTES
Semester Spring
Name of Instructor Prof. Dr. DANTE DORANTES

Course Contents

Hafta Konu
1) Giriş. Fiziksel Sistemlerin Blok Diyagram Modellemesi.
2) Sistem Modelleme Teknikleri: Adi Diferansiyel Denklemler (ODE), Transfer Fonksiyonu (TF), Frekans Alanı ve Durum Uzayı (SS). MATLAB kullanılarak Laplace Dönüşümünün Çözümü.
3) MISO DC motor modeli. Transfer fonksiyonları ve Bode çizimleri. Operatif amplifikatörlerle modelleme.
4) Motor sabitleri. Eşdeğer moment/atalet momenti/viskoz sönümleme. Doğrusallaştırma.
5) Mesh Analiz Tekniği.
6) Mesh Analiz Tekniği. MATLAB Çizimi, Transfer Fonksiyonları ve Durum Uzayı.
7) Aritmetik işlemler, vektörler, MATLAB'da polinomların çözümü. Zaman tepkisi kavramları.
8) Sistem elemanlarının Zaman Tepkisi. Performans Kriterleri. Sistem tanımlaması.
9) PID kontrolör analizi ve kontrolör ayarı.
10) LTI Viewer. Blok Diyagramlarının Azaltılması. TF-SS ve SS-TF dönüşümleri. Başlangıç ​​Koşulları.
11) MATLAB'da PID Ayarı. PID kontrolör ve tesisinin Simulink modeli.
12) Routh-Hurwitz ile Kararlılık Analizi.
13) Kök Yeri Yoluyla Kararlılık Analizi. Sinyal Akış Grafikleri ve Durum-Değişken Geri Besleme Tasarım Yöntemi (Kutup Yerleşimi), Kontrol Edilebilirlik.
14) Durum-Değişken Geribildirim Tasarım Yöntemi.
15) Proje Sunum Dönemi.
16) Proje Sunum Dönemi.
Required/Recommended ReadingsControl Systems Engineering, International Student Version, Norman S. Nise, 6th Edition, Wiley, 2011 (textbook) Other reference: System Dynamics, William J. Palm, 4th Edition, McGraw-Hill, 2021 (reference) Modern Control Engineering, Katsuhiko Ogata, 5th Edition, Pearson, 2009
Teaching MethodsFlipped Learning/Lecture/Laboratory Work/Project/Guided Personal Study
Homework and ProjectsDesign of a PID position/velocity control system using MATLAB Control Tool Box and Simulink
Laboratory WorkNone
Computer UseCompulsory computer-aided problem-solving using MATLAB Control Toolbox and Simulink.
Other ActivitiesNone
Assessment Methods
Assessment Tools Count Weight
Uygulama 10 % 10
Küçük Sınavlar 12 % 10
Ödev 4 % 20
Projeler 1 % 30
Final 1 % 30
TOTAL % 100
Course Administration dorantesd@mef.edu.tr
0212 395 36 40
office hours: Monday 18:00-19:00 email address: dorantesd@mef.edu.tr Rules for attendance: Attendance is taken during Flipped Classroom Practice. A minimum of 70% of attendance is mandatory. Rules for Flipped Classroom Practice: Missed Flipped Classroom Practice (FCP) will be given a zero grade. Participation quizzes with flaws or lack of individual collaboration attitude during teamwork will be given a grade of one. Successful participation quizzes and individual collaboration attitudes will be given a grade of two. FCP activities are conducted during online class time (20-40 min), by solving a similar previously solved exercise, but working in randomly formed teams, and emailing their solution scanned pdf file using CamScanner application by the end of the class. The FCP evidence will be the only way to count student class attendance. Rules for late submission of project or assignment: It will be discounted 50/100 for each delayed day. Rules for missing a midterm: Provided that a valid official justification approved by the university and presented, a make-up midterm will be granted one week immediately after the regular midterm date. Minimum grade to be allowed to pass the course (FZ): Satisfactory Flipped Classroom Practice, Midterms, Assignments, and Project grades, as well as at least 70% attendance, are mandatory to be allowed to pass the course. A reminder of proper classroom behavior, code of student conduct: YÖK Regulations Statement on plagiarism: YÖK Regulations http://www.mef.edu.tr/Yonetmelikler

ECTS Student Workload Estimation

Activity No/Weeks Hours Calculation
No/Weeks per Semester Preparing for the Activity Spent in the Activity Itself Completing the Activity Requirements
Ders Saati 12 0 2 1 36
Proje 6 22 20 2 264
Ödevler 10 0 0.5 0.5 10
Küçük Sınavlar 12 0 2 1 36
Final 1 2 4 1 7
Total Workload 353
Total Workload/25 14.1
ECTS 7.5