School/Faculty/Institute |
Graduate School |
Course Code |
MECH 501 |
Course Title in English |
Mechatronic Systems Modeling and Control |
Course Title in Turkish |
Mekatronik Sistem Modelleme ve Kontrol |
Language of Instruction |
EN |
Type of Course |
Lecture |
Level of Course |
Advanced |
Semester |
Spring |
Contact Hours per Week |
Lecture: 3 |
Recitation: - |
Lab: - |
Other: - |
|
Estimated Student Workload |
343 hours per semester |
Number of Credits |
7.5 ECTS |
Grading Mode |
Standard Letter Grade
|
Pre-requisites |
None |
Co-requisites |
None |
Expected Prior Knowledge |
Basic knowledge of electric and electronic engineering |
Registration Restrictions |
Only Graduate Students |
Overall Educational Objective |
To learn the principles of analog control engineering such as system modeling in time and frequency domains, time response, stability, root locus, and state space design.
|
Course Description |
The objective of this course is to provide the student with an introduction to modeling, analysis, simulation and control of mechatronics systems. Computer modeling and mathematical representation of mechanical, electrical, hydraulic, thermal, and electronic systems or combinations of these. The following topics will be emphasized: System modeling and analysis of linear time-invariant systems in time, Laplace, frequency domain, and state-space methods; time response; block diagram reduction; stability analysis using the Routh-Hurwitz and Root Locus techniques; system model conversions; system analysis with initial conditions and general form inputs; state variable feedback controller design. Computer-aided tools such as MATLAB and Simulink will be used throughout the course, and laboratory practice is included. |
Course Learning Outcomes and Competences
Upon successful completion of the course, the learner is expected to be able to:
1) Blok diyagram modellemesi ve matematiksel modellerini adi diferansiyel denklemler, Laplace dönüşümü, frekans alanı ve durum uzayı gösterimleri olarak kurma konusunda problemleri tanımlama, analiz etme, formüle etme ve çözme;
2) Çok serbestlik derecesine sahip doğrusal, zamana bağlı olmayan mekanik sistemler için ağ analizini uygulayarak sorunları tanımlamak, analiz etmek, formüle etmek ve çözmek; durum uzayı modelini elde etmek;
3) İkinci dereceden sistemlerin zaman tepkisi davranışına ilişkin sorunları tanımlayın, analiz edin, formüle edin ve çözün, kararlılık analizini uygulayın ve MATLAB Kontrol Sistemleri Araç Kutusu ve Simulink'i kullanarak PID denetleyicileri tasarlayın;
4) Gerçek yaşam uygulaması için bir PID kontrol sistemi tasarlayın ve simüle edin;
5) Bir proje ekibinde iletişim kurmak ve işbirliği yapmak, hedefler belirlemek, görevleri tamamlamak ve son teslim tarihlerine uymak, profesyonel bir şekilde nihai raporunu yazmak ve sözlü olarak savunmak;
6) Kendi kendine öğrenme ve yeni bilgiyi kendi imkânlarıyla uygulama becerisini, yaşam boyu sürecek değerli bir öğrenme becerisi olarak benimser.
|
Program Learning Outcomes/Course Learning Outcomes |
1 |
2 |
3 |
4 |
5 |
6 |
1) |
|
|
|
|
|
|
2) |
|
|
|
|
|
|
3) |
|
|
|
|
|
|
4) |
|
|
|
|
|
|
5) |
|
|
|
|
|
|
6) |
|
|
|
|
|
|
7) |
|
|
|
|
|
|
8) |
|
|
|
|
|
|
9) |
|
|
|
|
|
|
10) |
|
|
|
|
|
|
Relation to Program Outcomes and Competences
N None |
S Supportive |
H Highly Related |
|
|
|
|
Program Outcomes and Competences |
Level |
Assessed by |
1) |
|
H |
Sınav,Ödev,Derse Katılım,Proje
|
2) |
|
H |
Proje
|
3) |
|
H |
Proje
|
4) |
|
S |
Proje
|
5) |
|
N |
|
6) |
|
N |
|
7) |
|
S |
Proje
|
8) |
|
S |
Proje
|
9) |
|
S |
Proje
|
10) |
|
N |
|
Prepared by and Date |
DANTE DORANTES , January 2023 |
Course Coordinator |
DANTE DORANTES |
Semester |
Spring |
Name of Instructor |
Prof. Dr. DANTE DORANTES |
Course Contents
Hafta |
Konu |
1) |
Giriş. Fiziksel Sistemlerin Blok Diyagram Modellemesi. |
2) |
Sistem Modelleme Teknikleri: Adi Diferansiyel Denklemler (ODE), Transfer Fonksiyonu (TF), Frekans Alanı ve Durum Uzayı (SS). MATLAB kullanılarak Laplace Dönüşümünün Çözümü. |
3) |
MISO DC motor modeli. Transfer fonksiyonları ve Bode çizimleri. Operatif amplifikatörlerle modelleme. |
4) |
Motor sabitleri. Eşdeğer moment/atalet momenti/viskoz sönümleme. Doğrusallaştırma. |
5) |
Mesh Analiz Tekniği. |
6) |
Mesh Analiz Tekniği. MATLAB Çizimi, Transfer Fonksiyonları ve Durum Uzayı. |
7) |
Aritmetik işlemler, vektörler, MATLAB'da polinomların çözümü. Zaman tepkisi kavramları. |
8) |
Sistem elemanlarının Zaman Tepkisi. Performans Kriterleri. Sistem tanımlaması. |
9) |
PID kontrolör analizi ve kontrolör ayarı. |
10) |
LTI Viewer. Blok Diyagramlarının Azaltılması. TF-SS ve SS-TF dönüşümleri. Başlangıç Koşulları. |
11) |
MATLAB'da PID Ayarı. PID kontrolör ve tesisinin Simulink modeli. |
12) |
Routh-Hurwitz ile Kararlılık Analizi. |
13) |
Kök Yeri Yoluyla Kararlılık Analizi. Sinyal Akış Grafikleri ve Durum-Değişken Geri Besleme Tasarım Yöntemi (Kutup Yerleşimi), Kontrol Edilebilirlik. |
14) |
Durum-Değişken Geribildirim Tasarım Yöntemi. |
15) |
Proje Sunum Dönemi. |
16) |
Proje Sunum Dönemi. |
Required/Recommended Readings | Control Systems Engineering, International Student Version, Norman S. Nise, 6th Edition, Wiley, 2011 (textbook)
Other reference:
System Dynamics, William J. Palm, 4th Edition, McGraw-Hill, 2021 (reference)
Modern Control Engineering, Katsuhiko Ogata, 5th Edition, Pearson, 2009 |
Teaching Methods | Flipped Learning/Lecture/Laboratory Work/Project/Guided Personal Study
|
Homework and Projects | Design of a PID position/velocity control system using MATLAB Control Tool Box and Simulink |
Laboratory Work | None |
Computer Use | Compulsory computer-aided problem-solving using MATLAB Control Toolbox and Simulink. |
Other Activities | None |
Assessment Methods |
Assessment Tools |
Count |
Weight |
Uygulama |
10 |
% 10 |
Küçük Sınavlar |
12 |
% 10 |
Ödev |
4 |
% 20 |
Projeler |
1 |
% 30 |
Final |
1 |
% 30 |
TOTAL |
% 100 |
|
Course Administration |
dorantesd@mef.edu.tr
0212 395 36 40
office hours: Monday 18:00-19:00
email address: dorantesd@mef.edu.tr
Rules for attendance: Attendance is taken during Flipped Classroom Practice. A minimum of 70% of attendance is mandatory.
Rules for Flipped Classroom Practice: Missed Flipped Classroom Practice (FCP) will be given a zero grade. Participation quizzes with flaws or lack of individual collaboration attitude during teamwork will be given a grade of one. Successful participation quizzes and individual collaboration attitudes will be given a grade of two. FCP activities are conducted during online class time (20-40 min), by solving a similar previously solved exercise, but working in randomly formed teams, and emailing their solution scanned pdf file using CamScanner application by the end of the class. The FCP evidence will be the only way to count student class attendance.
Rules for late submission of project or assignment: It will be discounted 50/100 for each delayed day.
Rules for missing a midterm: Provided that a valid official justification approved by the university and presented, a make-up midterm will be granted one week immediately after the regular midterm date.
Minimum grade to be allowed to pass the course (FZ): Satisfactory Flipped Classroom Practice, Midterms, Assignments, and Project grades, as well as at least 70% attendance, are mandatory to be allowed to pass the course.
A reminder of proper classroom behavior, code of student conduct: YÖK Regulations
Statement on plagiarism: YÖK Regulations http://www.mef.edu.tr/Yonetmelikler
|