PHYS 103 Physics IMEF UniversityDegree Programs Elementary Mathematics EducationGeneral Information For StudentsDiploma SupplementErasmus Policy Statement
Elementary Mathematics Education
Bachelor Length of the Programme: 4 Number of Credits: 240 TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF: Level 6

Ders Genel Tanıtım Bilgileri

School/Faculty/Institute Faculty of Engineering
Course Code PHYS 103
Course Title in English Physics I
Course Title in Turkish Fizik I
Language of Instruction EN
Type of Course Lecture
Level of Course Introductory
Semester Fall
Contact Hours per Week
Lecture: 3 Recitation: none Lab: none Other: none
Estimated Student Workload 151 hours per semester
Number of Credits 6 ECTS
Grading Mode Standard Letter Grade
Pre-requisites None
Expected Prior Knowledge None
Co-requisites None
Registration Restrictions Only Undergraduate Students
Overall Educational Objective To acquire knowledge in the fundamental principles of physics while establishing a cross reference between them and the real-world applications, in order to use them in engineering applications.
Course Description This course includes the topics mostly related with mechanics part of fundamental physics. These topics are; significant figures, units and unit analysis, vectors, motion in one dimension, motion in multi dimensions, Newton’s Laws and their applications, work and kinetic energy, potential energy and conservation of energy, momentum and conservation of momentum, rotation of rigid bodies and dynamics of rotational motion.
Course Description in Turkish Bu ders, genel anlamda temel fiziğin mekanik konularını içermektedir. Bu konular sayı yuvarlama, birimler ve birim analizi, vektörler, tek ve çok boyutlu hareket, Newton yasaları ve uygulamaları, iş ve kinetik enerji, potansiyel enerji ve enerjinin korunumu, momentum ve momentumun korunumu, rijit cisimlerin dönmesi ve dönme dinamiğidir.

Course Learning Outcomes and Competences

Upon successful completion of the course, the learner is expected to be able to:
1) Examine the physics results by unit analysis
2) Apply the basic operations with vectors (scalar and vector products)
3) Apply the principles of kinematics in multi dimensions and direct applications of Newton's laws to solve the fundamental physics problems
4) Apply concepts of energy, momentum, impulse and conservation laws
5) Apply the principles of kinetics and dynamics of rotation around a single axis
6) Apply the principals related with the free and forced oscillations
Program Learning Outcomes/Course Learning Outcomes 1 2 3 4 5 6
1) Apply effective and student-centered specific teaching methods and strategies in order to improve students’ mathematical thinking and problem solving skills.
2) Design lesson plans based on how students learn mathematics and students’ difficulties in learning mathematics.
3) Demonstrate knowledge in various areas of mathematics (such as analysis, algebra, linear algebra, geometry, topology, mathematical modeling, statistics and probability, differential equations) and nature of science and mathematics.
4) Display knowledge and skills in developing programs, teaching technologies and materials in order to teach mathematics in effective and meaningful ways based on student needs.
5) Evaluate and assess students’ individual developmental paths, difficulties in understanding mathematics in multiple ways and use assessment results in improving teaching and learning.
6) Have an awareness of students’ social, cultural, economic and cognitive differences and plan the lessons and activities based on this awareness.
7) Collaborate and respectively communicate with colleagues and student parents such that students learn mathematics in best ways and at the same time feel happy and safe. Work effectively within teams of their own discipline and multi-disciplinary as well as take individual responsibility when they work alone.
8) Have awareness of need for life-long learning. Access information and following developments in education, science and technology. Display skills of solving problems related to their field, renew and improve themselves and critically analyze and question their own work. Use information technologies in effective ways.
9) Use scientific investigation effectively to solve problems in mathematics teaching and learning based on scientific methods. Critically investigate, analyze and make a synthesis of data, and develop solutions to problems based on data and scientific sources.
10) Exhibit skills of communicating effectively in oral and written Turkish and command of English at least at B2 general level of European Language Portfolio.
11) Have awareness of and sensitivity to different cultures, values and students’ democratic rights.
12) Display ethical and professional responsibilities. Have awareness of national and universal sensitivities that are expressed in National Education Fundamentals Laws.
13) Demonstrate consciousness and sensitivity towards preserving nature and environment in the process of developing lesson activities.
14) Display knowledge in national culture and history as well as international cultures and recognize their richness. Have awareness of and participate to developments in society, culture, arts and technology.

Relation to Program Outcomes and Competences

N None S Supportive H Highly Related
     
Program Outcomes and Competences Level Assessed by
1) Apply effective and student-centered specific teaching methods and strategies in order to improve students’ mathematical thinking and problem solving skills. N
2) Design lesson plans based on how students learn mathematics and students’ difficulties in learning mathematics. N
3) Demonstrate knowledge in various areas of mathematics (such as analysis, algebra, linear algebra, geometry, topology, mathematical modeling, statistics and probability, differential equations) and nature of science and mathematics. H Exam,HW,Participation
4) Display knowledge and skills in developing programs, teaching technologies and materials in order to teach mathematics in effective and meaningful ways based on student needs. N
5) Evaluate and assess students’ individual developmental paths, difficulties in understanding mathematics in multiple ways and use assessment results in improving teaching and learning. N
6) Have an awareness of students’ social, cultural, economic and cognitive differences and plan the lessons and activities based on this awareness. N
7) Collaborate and respectively communicate with colleagues and student parents such that students learn mathematics in best ways and at the same time feel happy and safe. Work effectively within teams of their own discipline and multi-disciplinary as well as take individual responsibility when they work alone. N
8) Have awareness of need for life-long learning. Access information and following developments in education, science and technology. Display skills of solving problems related to their field, renew and improve themselves and critically analyze and question their own work. Use information technologies in effective ways. N
9) Use scientific investigation effectively to solve problems in mathematics teaching and learning based on scientific methods. Critically investigate, analyze and make a synthesis of data, and develop solutions to problems based on data and scientific sources. N
10) Exhibit skills of communicating effectively in oral and written Turkish and command of English at least at B2 general level of European Language Portfolio. N
11) Have awareness of and sensitivity to different cultures, values and students’ democratic rights. N
12) Display ethical and professional responsibilities. Have awareness of national and universal sensitivities that are expressed in National Education Fundamentals Laws. N
13) Demonstrate consciousness and sensitivity towards preserving nature and environment in the process of developing lesson activities. N
14) Display knowledge in national culture and history as well as international cultures and recognize their richness. Have awareness of and participate to developments in society, culture, arts and technology. N
Prepared by and Date AHMET TOGO GİZ , September 2020
Course Coordinator MEHMET FEVZİ ÜNAL
Semester Fall
Name of Instructor Prof. Dr. AHMET TOGO GİZ

Course Contents

Week Subject
1) Fundamental quantities, significant figures, units and unit analysis. Vectors: Vector algebra, scalar product, vector product
2) Vectors: Vector algebra, scalar product, vector product, Static Equilibrium
3) Motion in 1, 2 and 3 dimensions: Projectile motion and uniform circular motion
4) Newton’s first, second and third laws
5) Application of Newton laws: Friction and uniform circular motion
6) Work and Kinetic Energy: Work, work-energy theorem and power
7) Potential energy and conservation of energy: Conservative and non-conservative forces
8) Momentum and motion of system of particle: Center of mass, motion of the center of mass
9) Momentum and conservation of momentum
10) Rotational kinematics: Angular position, angular velocity, angular acceleration, moment of inertia
11) Rotational dynamics: Torque, work and kinetic energy for rotating bodies
12) Rotational dynamics: Angular momentum, conservation of angular momentum
13) Free vibrations of simple systems
14) Forced vibrations and resonance
15) Final Examination Period
16) Final Examination Period
Required/Recommended ReadingsTextbook : Sears & Zemansky's University Physics, 13th Edition, Vol. 1 Mastering Physics with eText -- Access Card Package http://wps.aw.com/aw_young_physics_11/13/3510/898586.cw/index.html
Teaching MethodsStudents should watch the lecture videos posted in the blackboard system before they come to the classroom. The lecture contents are also posted in the blackboard system. The lectures are conventional lectures with instructor dominated. However, contributions of students are welcome. The interaction with the students (Q&A) will be maximized as much as possible.
Homework and ProjectsThere are non-mandatory homework
Laboratory Worknone
Computer Usenone
Other ActivitiesRandom quizzes will take place. We will have at least 7 quizzes.
Assessment Methods
Assessment Tools Count Weight
Attendance 1 % 10
Quiz(zes) 1 % 20
Midterm(s) 1 % 30
Final Examination 1 % 40
TOTAL % 100
Course Administration giza@mef.edu.tr

Students are expected to attend 70% of the classes. There is no make-up for missed classes. The attendance performance is going to be reflected by 10% to the final grades. One make-up exam will be given at the end of the semester for those who miss an exam due to a legitimate excuse accepted by the instructor. The students are expected to pursue in this class with honesty and integrity. Disciplinary action will be pursued in all instances if academic dishonesty and cheating has occurred. Students with disabilities should consult the instructor for their special needs. For any question, please consult the instructor via mail (giza@mef.edu.tr).

ECTS Student Workload Estimation

Activity No/Weeks Hours Calculation
No/Weeks per Semester Preparing for the Activity Spent in the Activity Itself Completing the Activity Requirements
Course Hours 14 2 3 1 84
Homework Assignments 10 0 2 20
Quiz(zes) 10 0.3 0.2 5
Midterm(s) 4 8 2 1 44
Total Workload 153
Total Workload/25 6.1
ECTS 6